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Abstract This study uses Observing System Simulation Experiments (OSSEs) to examine the reconstruc-
tion of biogeochemical variables in the Southern Ocean from an array of autonomous profiling floats. In
these OSSEs, designed to be relevant to the Southern Ocean Carbon and Climate Observation and Modeling
(SOCCOM) project, the simulated floats move with oceanic currents and sample dissolved oxygen and inor-
ganic carbon. The annual mean and seasonal cycle of these fields are then reconstructed and compared to
the original model fields. The reconstruction skill is quantified with the reconstruction error (RErr), defined
as the difference between the reconstructed and actual model fields, weighted by a local measure of the
spatiotemporal variability. The square of the RErr is small (<0.5) for 150 floats in most of the domain, which
is interpreted to mean that the reconstruction skill is high. An idealized analytical study demonstrates that
the RErr depends on the magnitude of the seasonal cycle, spatial gradients, speed of float movement,
amplitude of mesoscale variability, and number of floats. These factors explain a large part of the spatial var-
iability in the RErr and can be used to predict the reconstruction skill of the SOCCOM array. Furthermore,
our results demonstrate that an array size of 150 floats is a reasonable choice for reconstruction of surface
properties and annual-mean 2000 m inventories, with the exception of the seasonal cycle in parts of the
Indo-Atlantic, and that doubling this number to 300 results in a very modest increase in the reconstruction
skill for dissolved oxygen.

1. Introduction

The Southern Ocean Carbon and Climate Observation and Modeling (SOCCOM) biogeochemical array has
started providing a wealth of data with the goal of quantifying the role of the Southern Ocean in the global
carbon cycle. The project aims to deploy 150–200 autonomous floats that take vertical profiles of dissolved
oxygen (O2), nitrate, pH, and chlorophyll concentrations in the upper 2000 m every 10 days. The spatial and
temporal sampling coverage of the biogeochemical data will be unprecedented but may still be too sparse
for accurate resolution of fields in the regions of sharp fronts and strong temporal variability. Quantitative
analysis is thus needed to assess the skill with which large-scale gridded properties can be reconstructed
from these sparse local observations, to establish where in the domain this skill is the highest, and to deter-
mine which temporal and spatial features the float array is able to reveal. In making decisions about the size
of the observational array, it is important to balance improvements in the accuracy of the reconstructed
fields against increased costs of the array. The conclusions from an analysis of the reconstruction skill can
therefore be used to optimize the deployment strategy, informing decisions on how many profiling floats
to deploy and where to deploy them.

The reconstruction skill is determined by the temporal and spatial variability in the sampled fields and by
the number, location, and frequency of the profiles. This dependence is complicated, since the floats are
constantly moving, sampling different parts of the ocean at different times. These issues can be effectively
addressed by Observing System Simulation Experiments (OSSEs) [Arnold and Dey, 1986]. The technique has
been used to analyze different ocean observing systems in ocean models of varying complexity [e.g., Kindle,
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1986; Barth and Wunsch, 1990; Bennett, 1990; Hernandez et al., 1995; Hackert et al., 1998; Schiller et al., 2004;
Ballabrera-Poy et al., 2007; Vecchi and Harrison, 2007; Griffa et al., 2006]. In the setting relevant to SOCCOM,
float trajectories can be either simulated in a numerical model or taken from an existing profiling float array
(Argo, http://www.argo.ucsd.edu) and then used to sample a model-simulated field the way that the real
floats sample the real ocean. After reconstructing the field from the resulting synthetic data, the reconstruc-
tion skill can be readily quantified using a convenient metric—the reconstruction error, defined as the dif-
ference between the reconstructed and model fields [Kamenkovich et al., 2009, 2011]. The advantages of
this method are in the precise knowledge of the model fields and in the ability to estimate the dependence
of the reconstruction skill on the number of floats, deployment locations, and other parameters of the SOC-
COM array.

Several factors can impact the reconstruction skill. Sampled fields have complex spatial structure with a range
of temporal scales, which can affect the reconstruction skill of climatological values in complicated ways. For
example, the strong Antarctic Circumpolar Current (ACC) significantly displaces profiling floats during the 10
day sampling interval. As demonstrated by Kamenkovich et al. [2009], this displacement can complicate recon-
struction of the time-dependent oceanic state and even lead to gaps in the spatial sampling coverage. Fur-
thermore, advection by powerful mesoscale eddies, which have velocities that often greatly exceed the
velocity of the time-mean circulation, can change spatial distribution of floats. The overall spatial coverage
can be expected to become more uniform, which can improve reconstruction accuracy [Kamenkovich et al.,
2011], but float divergence can also take place, leading to reduced coverage in some regions.

In this study, we examine the reconstruction skill for biogeochemical quantities by an array of profiling
floats in the Southern Ocean. As in any OSSE, applicability of our results to the actual observing system is
contingent on how closely the numerical simulation represents the real ocean. Previous attempts to quan-
tify the number of floats needed to reconstruct biogeochemical quantities and the associated reconstruc-
tion skill have been carried out with coarse-resolution models and fixed (not moving) floats [Majkut et al.,
2014]. Our study extends this analysis into a more realistic setting with moving floats and high-resolution
numerical simulations. Despite the use of high-resolution state-of-the-art models, the model statistics can
still be different from the real ocean. We begin by presenting an analytical study (‘‘idealized OSSE,’’ section
2) that explores the sensitivity of the reconstruction skill to various factors, which will be useful in interpret-
ing the results of comprehensive OSSEs. Section 3 describes the full comprehensive OSSEs, which are car-
ried out using state-of-the-art high-resolution models with a sampling strategy closely resembling the Argo
and SOCCOM methodology. In section 4, we analyze the resulting reconstructed monthly climatology of
dissolved oxygen (O2) and dissolved inorganic carbon (DIC), focusing on the dependence of the reconstruc-
tion skill for O2 on the spatial scale and on the number of floats. DIC is not measured directly by the SOC-
COM array but is derived from the measured variables (temperature, salinity, nitrate, O2, and pH). We
include DIC in this study because one of SOCCOM’s main goals is to estimate the carbonate system in the
Southern Ocean. Conclusions are drawn in section 5.

2. Idealized OSSE

The most important factors affecting the reconstruction skill are the spatiotemporal variability in the sam-
pled field, the movement of floats, and the number of floats [Kamenkovich et al., 2009]. Understanding this
dependence is challenging in a comprehensive OSSE because of strong geographical variations in all of
these factors. Prior to the analysis of the full comprehensive OSSEs, we examine the importance of these
factors by designing an idealized analytical study. Our main objective here is to understand how the recon-
struction skill depends on the length scale in the signal and on such parameters as the magnitude of the
seasonal cycle, mesoscale variability, and float movement. For this purpose, we consider a tracer varying
with time t and distance x in a periodic domain of length L, and decompose this field into a set of Fourier
harmonics with spatial length scales Ln5L=n and amplitude Cn:

F x; tð Þ5
Xnmax

n50

Cncos
2pnx

L

� �
11Asin

2pt
T

� �
(1)

F(x, t) represents a climatological signal with a seasonal cycle of amplitude A. We take T 5 1 year,
L 5 20,000 km and vary n between 0 and nmax 5 50. To make further progress, we examine reconstruction
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of the sum of the basin-scale (x-independent) part of the signal and the nth harmonic. To study the impacts
of mesoscale variability on the reconstruction of each harmonic, we also add an idealized mesoscale signal,
in the form of waves with amplitude B and length scale Le, propagating at speed c:

F x; tð Þ5 11
Cn

C0
cos

2pnx
L

� �� �
11Asin

2pt
T

� �
1Bsin

2p
Le

x2ctð Þ (2)

For this study, we take Le 5 100 km and c 5 Le=30 days � 0.04 m s21, which are reasonable choices for the
ACC region. Note that the monthly average of this mesoscale term is exactly zero.

The field (2) was sampled by N ‘‘floats’’ moving with constant speed U for 1 year. Data samples are taken
every 10 days, with start dates of the floats staggered throughout the first 10 days and initial positions of all
floats randomly distributed. The reconstruction of the monthly values of F in this idealized OSSE is carried
out with a simple linear interpolation in x-direction. To compute the monthly fields, all measurements
within the same month are clustered together. The reconstruction error in the annual-mean field (RErra) is
defined as
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The reconstruction error for the seasonal cycle is defined as
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where cFm is the reconstructed field for month m, Sm 5 sin 2pt
T averaged over month m, and angle brackets

indicate spatial averaging. Note that both reconstruction biases are weighted by the standard deviation in
the signal, and that their squares can be interpreted as normalized mean squared reconstruction bias. In
the rest of this section, we will analyze the dependence of RErr2

a and RErr2
s on Ln5L=n, N, U, A, and B. We set

Cn=C050:5, and verified that other values do not change the sensitivity of RErr to parameters qualitatively.

To study the sensitivity of the reconstruction skill to the average spacing between floats, we set U 5 0.05 m
s21, which is an appropriate choice for the ACC at 1 km depth [e.g., Nowlin and Klinck, 1986]. In the real
ocean, U can be interpreted as the difference between the propagation speed of tracer anomalies at, for
example, the surface and movement of the floats at 1000 m depth. Guided by the analysis of the full OSSEs
(see section 3.1), we set A 5 0.35, and B 5 0.2 and vary the number of floats N. As expected, RErra and RErrs

increase with decreasing N (Figure 1). The increase, however, depends on the length scale Ln that is being
reconstructed (Figures 1c and 1d). For Ln less than approximately 5L/N, RErr2

s is >0.5, which means that the
absolute error variance is greater than half the variance in the monthly values and thus the reconstruction
skill is deemed low. This result suggests that at least five data points are needed for resolving each length
scale in a monthly climatology. As long as a length scale is resolved, the RErr is largely insensitive to the
number of floats, e.g., for Ln 5 5000 km and profile spacing< 1000 km in Figure 1d. Note, however, that a
large number of floats are needed to bring RErrs close to zero (Figures 1b and 1d), because of the need to
have multiple measurements within the same month to produce a meaningful monthly mean.

The dependence of RErr on float movement U and magnitude of time dependence (A and B) is summarized
in Figure 2 for N 5 30 and Ln54000 km. Kamenkovich et al. [2009] discussed ‘‘positive’’ (increase in the sam-
pling coverage) and ‘‘adverse’’ (distortion of the seasonal cycle) effects of float movement. The positive
effect explains the decrease in RErra with increasing U (Figure 2a). The adverse effect is dominant for U <

0.1 m s21, with the smallest RErrs found for U 5 0 [see also Kamenkovich et al., 2009]. The positive effect bal-
ances the adverse one for U > 0.1 m s21 and further increases in U lead to nearly constant RErrs.

For the reconstruction of the seasonal cycle, the magnitude of the seasonal cycle A has only a slight effect
on the absolute mismatch between the actual and reconstructed fields, (A2RErr2

s , red line in Figure 2b), so
that RErr2

s decreases sharply with larger A (blue line in Figure 2b). This dependence is most pronounced for
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very long Ln (not shown), for which the absolute mismatch is insensitive to A. This behavior is observed for
all values of parameters, as long as there is spatial and mesoscale variability in the signal (n 6¼ 0 and B 6¼ 0).
For n 5 0 and B 5 0 (not shown), RErrs is insensitive to A, and the reconstruction bias increases linearly with
A. These results suggest that the spatial and mesoscale variability weaken the sensitivity of the reconstruc-
tion bias to the magnitude of the seasonal cycle and causes RErrs to decrease with A.

In contrast, RErr2
s increases with the strength of mesoscale variability B (Figure 2c), and the sensitivity is

strongest at long length scales. This can be explained by the aliasing of the mesoscale signal to these length
scales. For short and moderate length scales (Ln< 5000 km), RErra is nearly insensitive to the strength of the
seasonal cycle and mesoscale variability (not shown). The RErra at long scales, in contrast, increases in the
presence of time dependence, with the strongest sensitivity to B, but remains small.

In summary, RErr depends strongly on the spacing between floats as long as the dominant length scale in
the system is not fully resolved. A stronger seasonal cycle is associated with improved skill in reconstructing
that signal. Mesoscale variability acts to increase RErr, and the effects are especially large when the magni-
tude of this variability is large. The effect of float movement is a combination of the increase in spatial

Figure 1. Dependence on the number of floats N in the idealized OSSEs. (top row) RErr as a function of logarithm of the length scale Ln for five different values of profile spacing L/N
(shown by different colors) for the (a) RErra and (b) RErrs. (bottom row) RErr as a function of the profile spacing for three different values of Ln (shown by different colors) for the (c) RErra

and (d) RErrs.
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sampling coverage, which leads to a decrease in the RErr for the annual mean, and the distortion of the sea-
sonal cycle, which for small values of U leads to an increase in the RErr for the monthly climatology.

3. Full OSSEs: Models and Methods of Analysis

3.1. Simulated Biogeochemical Fields
The sampled fields, namely O2 and DIC, are taken from a CM2.6 coupled climate simulation. CM2.6 is a cou-
pled climate model first introduced by Delworth et al. [2012] and further analyzed by Griffies et al. [2015].
The model uses an atmospheric component of roughly 50 km horizontal resolution as well as sea ice and
land model components. The oceanic component has a grid spacing of 0.18 (corresponding to a grid size of
5.5 km at 608S) and has 50 levels in the vertical. The horizontal resolution is thus sufficiently high to simulate
a rich mesoscale eddy field in the Southern Ocean [Delworth et al., 2012, Griffies et al., 2015]. CM2.6 is cou-
pled to a biogeochemical model miniBLING [Galbraith et al., 2015] which simulates DIC and O2 as prognostic
tracers. CM2.6 was run for 200 years under 1860 ‘‘preindustrial’’ atmospheric radiation based on a constant
globally averaged CO2 mixing ratio of 286 parts per million by volume (ppmv). A brief evaluation of the
Southern Ocean state of the last 20 years of the CM2.6 preindustrial simulation can be found in Dufour et al.
[2015].

A comparison of mean surface DIC and O2 concentrations between observation-derived climatologies and
the CM2.6 simulation shows an overall good agreement [see Dufour et al., 2015, Figure 2]. Except along Ant-
arctic coasts, modeled DIC concentrations were found to be higher than those from observations south of
408S, with modeled O2 concentrations showing the opposite bias. The major reason for those biases is likely
to be an overexpression of the iron limitation in the modeled Southern Ocean [Galbraith et al., 2015].

We first provide a brief description of the spatial and temporal variability of the model-simulated fields in
the Southern Ocean, which will assist in interpreting RErr. For the analysis, we chose the surface values,
because of their high spatiotemporal variability and relevance to air-sea fluxes, and the inventories in the
top 2000 m, because of their importance in upper ocean budgets. Surface O2 concentrations tend to decline
equatorward, with the highest concentrations found poleward of the Subantarctic Front (SAF) and the
strongest gradients located near the SAF (Figure 3a). In contrast, the largest values in the 2000 m invento-
ries, reported as a vertical average over the top 2000 m, are found north of the SAF, roughly coinciding with
the deep mixed layers south of Australia and in the South Pacific and South Indian basins (Figure 3b). In the
South Atlantic, the inventories are more spatially uniform than the surface O2 concentrations. The standard

Figure 2. Sensitivity of the reconstruction skill to the main parameters in the idealized OSSE with a nominal array resolution of 670 km and L/n 5 4000 km. (a) Dependence of RErr2
a and

RErr2
s on the advection speed (U) for A 5 0.4 and B 5 0.2. (b) Dependence of RErr2

s on the magnitude of the seasonal cycle (A) for U 5 0.05 m s21 and B 5 0.2; also shown is A2RErr2
s .

(c) Dependence of RErrs on the magnitude of mesoscale variability (B) for U 5 0.05 m s21 and A 5 0.4.
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deviation (SD) of the monthly mean surface values is large in the Southeast (SE) Pacific, in the vicinity of the
SAF and in the Western South Atlantic. In contrast, the SD is small in the Indian and south of Australia where
the mixed layer is deep in winter.

Our idealized OSSEs demonstrated that the magnitude of the seasonal cycle (parameter A) and mesoscale
variability (parameter B) are two important parameters that influence the reconstruction skill for the sea-
sonal cycle. We now attempt to estimate these parameters from the model-simulated O2. For a variable F,
these parameters are estimated from the spatial variance VAR Fð Þ5 F2 Ff gð Þ2

n o
, where {. . .} stands for the

spatial average, calculated in two regions depicted in Figure 3. Nondimensional parameters A and B can
then be estimated as

A � 2hVAR O22hO2ið Þi
VAR hO2ið Þ

� �1
2

; B � A
M O2ð Þ

h O2f g2h O2f gið Þ2i

( )1
2

(5)

where the angle brackets denote annual-mean values and M(O2) stands for the area-averaged mesoscale
variance in O2. Mesoscale anomalies are defined as deviations of the 5 day fields on the original 1/108grid
from the monthly means on the 18 grid. Note that if the various terms in equation (5) are calculated for the
idealized fields in section 2, then hVAR O22hO2ið Þi5 1

4 A2Cn
2, VAR hO2ið Þ5 1

2 Cn
2, and h O2f g2h O2f gið Þ2i5 1

2 A2.
For the surface O2, we get A 5 0.4 (0.3) for the Pacific (Indo-Atlantic) regions and the parameter B is 0.2. Note
that, according to our idealized model, these numbers suggest lower reconstruction skill in the Indo-Atlantic
region.

For DIC, the annual-mean distribution of the 2000 m inventories resembles the surface distribution
(Figure 4), although the meridional gradients are sharper in the Atlantic and weaker in the Indo-Pacific sec-
tors. Similar to O2, the SD of the monthly mean surface values has strong maxima in the vicinity of SAF in

Figure 3. O2 climatology from 5 years of CM2.6 simulations, reported on the 18 3 18 grid. (a) Annual-mean values at the surface;
(b) annual-mean values in the inventories (average over the top 2000 m); and (c) standard deviation of monthly climatology of the surface
values. Units are lmol kg21. Ice-covered (with the ice fraction> 0.25) areas and areas shallower than 2000 m are masked. For reference,
the position of the SAF in the real ocean [Orsi et al., 1995] (http://gcmd.nasa.gov/records/AADC_southern_ocean_fronts.html) is shown by
the gray contour line. Two box regions used for the analysis are also shown by the black lines.
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the Pacific basin and in the Southwestern (SW) Atlantic. The main difference with the O2 distribution is
found north of the SAF in the Southeastern (SE) Pacific, where the annual cycle in DIC is weak. Instead, the
annual cycle is strong just east of New Zealand. Our estimates result in B 5 0.2 (0.3) for the Pacific (Indo-
Atlantic) regions, and A 5 0.3 for surface values in both regions. Note that the ratio A/B for DIC is 1.5 (1.0)
Pacific (Indo-Atlantic) regions and is lower than the same ratio for O2 (2.0 and 1.5, respectively), which hints
at lower reconstruction skill for DIC.

3.2. Location of Profiles
Conclusions from OSSEs can be very sensitive to where and when the profiles are taken. The trajectories of
SOCCOM floats are largely unknown, both because most of the deployment sites are not yet finalized and
because model projections of ocean currents can have biases. In this study, we account for sensitivity of the
conclusions to profile locations by using a wide range of trajectories and analyze an ensemble of model-
simulated and actual Argo trajectories for years 2010–2014. The real Argo float profile locations and times
were downloaded from the Argo Global Data Assimilation Centre (http://www.usgodae.org/ftp/outgoing/
argo). The model-simulated Argo trajectories were taken from separate OSSEs designed for the global Argo
array that are currently in progress. These global OSSEs use velocities from a global data-assimilating
HYCOM climatological simulation with 1/128 horizontal resolution and 32 vertical layers (simulation
GLBa0.08). This simulation without Argo floats has already been carried out and the daily horizontal veloci-
ties that we use here for calculation of Argo trajectories were downloaded from the HYCOM data portal
(www.hycom.org). In a manner that closely resembles the real Argo array, the simulated floats were
advected at the depth of 1000 m for 9 days, followed by a 6 h ascent during which a profile over 2000 m is
taken, 12 h of surface advection (note that this design is relevant to most Argo floats, whereas SOCCOM
floats typically spend less than 1 h at the surface), and a 6 h descent to the 1000 m depth. Their trajectories
were initialized at the actual Argo deployment sites. During their ascent (descent), the floats were advected
using velocities that are depth averaged over the upper 2000 m (1000 m). We did not use CM2.6 velocities

Figure 4. DIC climatology from 5 years of CM2.6 simulations, reported on the 18 3 18 grid. (a) Annual-mean values at the surface; (b) annual-mean values in the inventories (average
over the top 2000 m); and (c) standard deviation of monthly climatology of the surface values. Units are lmol kg21. Ice-covered (with the ice fraction> 0.25) areas and areas shallower
than 2000 m are masked. For reference, the position of the SAF in the real ocean (http://gcmd.nasa.gov/records/AADC_southern_ocean_fronts.html) is shown by the gray contour line.
Two box regions used for the analysis are also shown by the black lines.
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because daily velocities from CM2.6 simulations are only available at the surface. As a result, tracer fields
and 1000 m float trajectories are not necessarily consistent, which introduces some uncertainty in our con-
clusions. This additional uncertainty, which will depend on how strongly the 1000 m trajectories are corre-
lated with the field being reconstructed, is not accounted for explicitly here.

The analysis is based on an ensemble of N five-year-long float trajectories. If the actual Argo trajectories did
not last until the end of 2014, they were artificially extended using Argo trajectories that began after 2010
and ended after 31 December 2014. Our control simulation has N 5 150; sensitivity experiments that varied
the number of floats were also carried out. These N trajectories were randomly selected from a large group
of more than 400 Argo trajectories. Five sets of N HYCOM-generated and five sets of N actual Argo trajecto-
ries were used for the analysis. The RErr was calculated for each of these 10 sets, and we analyze both the
mean and SD of the resulting ensemble of RErr.

3.3. Reconstruction Errors
The reconstruction of O2 and DIC was carried out using a multiscale objective analysis technique [Gray and
Riser, 2015]. This method uses an iterative generalized least squares fitting procedure combined with a stan-
dard objective mapping algorithm to map large-scale and small-scale fields, respectively. The large-scale
signal is fit to a set of spherical radial basis functions, and the analysis is iterated to find optimal spatiotem-
poral scales to use in the objective mapping procedure. Accordingly, the primary advantage of this tech-
nique is that those scales are optimized based on the data instead of specified in an ad hoc manner.

For the full OSSEs, we again use the reconstruction error as the metric of reconstruction skill, defined here
as a weighted difference (bias) between the reconstructed (F reconstð Þ) and actual model (F modelð Þ) fields. The
weighting establishes the significance of this difference relative to the signal we are trying to recover from
the synthetic observations. For the annual mean, the mean bias is weighted by a measure of spatial variabil-
ity on long spatial scales:

RErra5 hF reconstð Þi2hF modelð Þi
� �

jrhF modelð Þi � Lj21
(6)

where r is the horizontal gradient, L is the vector length scale, taken to be (800 and 300 km) and the angle
brackets denote the average over 12 monthly means. For the definition of the spatial variability on scales L,
F modelð Þ in the denominator of (6) is spatially smoothed by a running 2-D mean with length scale L. This scale
roughly corresponds to the average spacing between floats, but it was verified that the conclusions are
qualitatively insensitive to the choice of the ratio between the zonal and meridional scales.

For the seasonal cycle, the RErr is defined as the SD of the monthly biases weighted by the SD of the
monthly values:

RErrs5SD F reconstð Þ2F modelð Þ
� �

SD F modelð Þ
� �n o21

(7)

No spatial smoothing is used in (7). These definitions are used in the rest of this study, with the exception of
the analysis of the sensitivity to the length scale in section 4.2. In this study, we will analyze the square of
(6) and (7), which can be interpreted as the normalized mean squared reconstruction bias. In the following
analysis, we interpret RErr2> 0.5, that is, the mean squared bias is greater than half the variance in the sig-
nal, as an indicator of unreliable reconstruction, and RErr2< 0.5 as an indicator of good reconstruction skill.
This choice of the threshold for good/low reconstruction skill is, of course, not unique, and should be made
according to the goals of each individual study. Note also that the weighted RErr in (6)–(7) can be larger
than 1.0, which indicates particularly poor reconstruction skill in places where the sampled profiles are too
sparse to produce a reliable estimate.

4. Full OSSEs: Results

4.1. RErr in the Control Simulation With 150 Floats
The analysis here is based on both the mean and SD of the 10-member ensembles of RErr2

a and RErr2
s (sec-

tion 3.2). Overall, ensemble-mean values show some regions with persistently large reconstruction
errors, such as the vicinity of the ice edge where the spatial sampling density for the Argo array is very
low (Figure 5). Note that because spatial sampling coverage of Argo floats is still very poor in seasonally
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ice-covered areas, these regions are excluded from the current analysis. Ensemble-mean RErr2
a for surface

O2 also exhibits local maxima (exceeding 0.5) in the Pacific sector of the ACC (near 488S) and the southern
part of the Atlantic subtropical gyre (Figure 5a). Apart from these two regions, RErr2

a is generally very low at
the surface, especially in the South Pacific (north of 488S). In this region, the absolute bias (numerator in
equation (6)) is low (Figure 5c), and the spatial variability in the model fields (denominator in equation (6);
Figure 6a) is high, which results in small RErra and high reconstruction skill for the spatial variability. Area-
averaged RMS values are computed for the RErr2 in two geographical regions, the South Pacific and the
Atlantic-Indian sectors of the Southern Ocean (shown by black boxes in Figures 3–8). The area averages for
these regions are dominated by a few small areas with large RErr. To remove the effect of those areas, we
determine the fraction of each region that had a reliable reconstruction (RErr2< 0.5) and then average the
RMS values from only those areas. In both regions, the reconstruction skill is good (RErr2

a < 0.5) in 97% of
the area, where the area-averaged RMS of RErr2

a is found to be 0.05 (Table 1). The RErr2
a is larger in the

2000 m inventory than at the surface (Figure 5b), especially in the South Atlantic around 368S, primarily due
to the weak spatial variability (i.e., small gradients) in the subsurface layers (Figure 6b). Large RErra in the
inventories is also observed in the vicinity of the SAF and in the South Pacific around 408S.

The idealized studies in section 2 demonstrated that for a given number of floats, the reconstruction skill is
affected by the magnitude of the seasonal cycle, mesoscale variability, and float advection speed. In

Figure 5. Reconstruction skill of the annual-mean O2 for 150 trajectories, based on an ensemble of 10 simulations. Figures show (a, b) ensemble-mean RErr2
a and (c, d) the ensemble rms

of the reconstruction bias (numerator in equation (6)), for both surface values (Figures 5a and 5c) and 2000 m inventories (Figures 5b and 5d). Units in Figures 5c and 5d are lmol kg21.
Ice-covered (with the ice fraction> 0.25) areas and areas shallower than 2000 m are masked. For reference, the position of the SAF in the real ocean is shown by the gray contour line.
Two box regions used for the analysis are also shown by the black lines.
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addition, spatial sampling density for the full OSSEs—the total number of profiles within a unit area—will
be uneven. Geographical distribution of these properties is shown in Figures 3c and 8a–8c. According to
the analysis in section 2, RErra can be expected to decrease in the regions where the profiling floats are
moving fast, increase for long length scales if mesoscale variability is high, and remain relatively insensitive
to the seasonal cycle. Fast float advection in the SW Atlantic and Agulhas region (Figure 8b) indeed

Figure 6. Measure of spatial variability (denominator in equation (6)) for (a) surface O2 and (b) 2000 m O2 inventory. Units are lmol kg21. For reference, the position of the SAF in the
real ocean is shown by the gray contour line.

Figure 7. Ensemble standard deviation for (a) RErr2
a in the surface values; (b) RErr2

a in the inventories; and (c) RErr2
s in the inventories. Ice-covered (with the ice fraction> 0.25) areas and

areas shallower than 2000 m are masked. For reference, the position of the SAF in the real ocean is shown by the gray contour line. Two box regions used for the analysis are also shown
by the black lines.
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coincides with low RErra, despite relatively low spatial sampling density and high mesoscale variability. In
contrast, RErra is high in the vicinity of the SAF in the Pacific sector, where high mesoscale variability
degrades the reconstruction skill despite fast float movement. Finally, low spatial sampling coverage (Figure
8c) explains large reconstruction errors in the South Atlantic.

RErrs for O2 is on average higher than RErra (Table 1) and indicates that several regions have poor reconstruc-
tion skill. For example, the surface RErrs is very large (>1) south of Australia (Figure 9a). The monthly bias
(bracketed expression in the numerator in equation (7), Figure 9b) is large in this region of strong meridional
gradients, but the seasonal cycle is weak (Figure 3c), which results in a large RErrs. High mesoscale variance
(Figure 8a) is consistent with large RErrs near the SAF (south of Australia) and in the Agulhas region and Indian
Ocean. In the rest of the domain, the RErrs is significantly smaller, suggesting high reconstruction skill for the
seasonal cycle. For example, the RErrs is low in the vicinity of the Atlantic and Pacific SAF and in the SW Atlan-
tic and SE Pacific, which is primarily explained by the strong seasonal cycle in these regions (Figure 3c). Near
the SAF and in the SW Atlantic, low spatial sampling density and high mesoscale variance do not degrade the

reconstruction skill. Overall, RErr2
s < 0.5 in

94% (63%) of the Pacific (Atlantic-Indian)
regions (Table 1). The RErr2

s in the 2000 m
inventory is larger than 0.5 in most of the
domain, which is explained by the weak
seasonal cycle (A 5 0.1–0.2 according to
equations (5)). Hence, the reconstruction of
the seasonal cycle in the inventories is not
discussed in the rest of this study.

Ensemble SDs of RErr2
a and RErr2

s in O2

serve as a measure of the sensitivity of

Figure 8. Factors affecting the reconstruction skill. (a) Mesoscale variability in the surface O2, estimated by the mean square of deviations from the monthly mean. (b) Float advection
speed, estimated from the profile locations. (c) Spatial sampling coverage. Ice-covered (with the ice fraction> 0.25) areas and areas shallower than 2000 m are masked. For reference,
the position of the SAF in the real ocean is shown by the black contour line.

Table 1. Reconstruction Skill for O2 (First Row) and DIC (Second Row) for
the Control Simulation (N 5 150)a

RErr2
a Surface RErr2

s Surface RErr2
a Inventory

Pacific: O2 0.05 (0.97) 0.12 (0.94) 0.08 (0.93)
Pacific: DIC 0.1 (0.92) 0.23 (0.81) 0.08 (0.87)
Atlantic-Indian: O2 0.05 (0.97) 0.21 (0.63) 0.07 (0.94)
Atlantic-Indian: DIC 0.05 (0.98) 0.27 (0.41) 0.045 (0.97)

aReported is the area-averaged RErr2 in the two geographical regions
shown in Figures 3–8. The averaging is carried out only over the regions
where RErr2< 0.5. The ratio of the area with high reconstruction skill to
the total area is shown in parentheses.
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the RErr to specific float trajectories and, therefore, of the uncertainty in our estimates of the reconstruc-
tion skill. SD values are lower than 0.5 in most of the domain and are particularly small north of the ACC
and south of 368S (Figures 7c and 7d), which suggests high confidence in the OSSE-based predictions of
the reconstruction skill in this region. The SDs are larger in the ACC and the South Atlantic and South
Indian. Large SD values tend to coincide with low spatial sampling coverage, which is not surprising since
the RErr is expected to be most sensitive to the profile locations in places where the profiles are sparse.
Combined with relatively high values of the ensemble-mean RErr2, these results therefore suggest the
need for denser data sampling in these regions.

The reconstruction skill for DIC has several significant differences compared to that for O2. The magnitude
of the RErr2

a for surface DIC is larger than for O2 in the Pacific sector (Table 1), consistent with a more uni-
form spatial distribution of the former quantity (Figure 10a), but is similar to O2 in the Atlantic-Indian sector.
The opposite is true for the inventories, with the RErr2

a for DIC smaller than the error for O2 in the Atlantic-
Indian sector and similar in the Pacific. The RErr2

s is larger for DIC than for O2 everywhere in the domain
(Table 1 and Figures 10c and 10d). At the surface, the largest differences are observed in the reconstruction
of the seasonal cycle in the SE Pacific, due to the weak seasonal cycle in this region.

4.2. Sensitivity of RErr in O2 to Length Scales
In this section, we examine how the reconstruction skill depends on the length scales in the reconstructed
O2 field. For this analysis, both of the boxed regions shown in Figures 3–8 were further divided into several
nonoverlapping square subregions where the reconstruction error is defined by

gRErr a
2
5 hO reconstð Þ

2 i2hO modelð Þ
2 i

h i2
� �

hO modelð Þ
2 i

h i
2 hO modelð Þ

2 i
h in o� �2

� �21

(8)

gRErr s
2
5 h O reconstð Þ

2 2O modelð Þ
2 2hO reconstð Þ

2 2O modelð Þ
2 i

h i2
i

� �

h O modelð Þ
2 2hO modelð Þ

2 i
h i2

i
� �21

(9)

The above equations use the following notations: [. . .] denotes the spatial smoothing using a two-
dimensional L by L running-mean filter; {. . .}. area averaging; and <. . .> stands for the average over 12
monthly values. The spatial smoothing and averaging are done for all values including regions with large
reconstruction bias. As in our standard definition, small (<0.5) values of RErr2 indicate good reconstruction
skill.

Figure 9. Reconstruction skill of the seasonal cycle in O2 for 150 trajectories, based on an ensemble of 10 simulations. Figures show (a) ensemble mean of RErr2
s and the ensemble rms of

the reconstruction bias (units are lmol kg21). Ice-covered (with the ice fraction> 0.25) areas and areas shallower than 2000 m are masked. For reference, the position of the SAF in the
real ocean is shown by the gray contour line. Two box regions used for the analysis are also shown by the black lines.
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Figure 11 shows the ensemble mean of gRErr a
2

and gRErr s
2
. Results show that gRErr a

2
and gRErr s

2
< 0.5 for all

fields. Overall, the weighted biases decrease with increasing L, since the removal of short length scales
increases the reconstruction skill. The bias for the annual-mean inventories seems to reach a near constant
value for L> 1000 km (Figure 11b), but for other quantities, the bias continues to decrease for longer length
scales. For example, for the surface values, the bias declines by more than a factor of 5 between L 5 100 km
and L 5 1800 km. Note that we cannot extend this analysis to longer length scales because of the geometri-
cal limitations of the smoothing operator.

As was demonstrated in section 2, the shortest length scale that can be accurately reconstructed—the
‘‘effective resolution’’ of the array—is several times longer than the average spacing between floats. The
average spacing is not easy to determine in a full OSSE, but dividing the area of the ocean between 608S
and 308S at 2000 m depth by the number of floats (150) and taking the square root gives an estimated float
spacing of approximately 750 km. The results of the idealized OSSE, which found that length scales greater
than 5 times the float spacing are well resolved, would then suggest that in this case the RErr should asymp-
tote for L> 3750 km. However, the average spacing between floats is not always an accurate predictor of
the effective resolution of the array due to the complexity of the domain, float movement, and variability in
the sampled field. In addition, the reconstruction in the full OSSEs is based on 5 years of synthetic measure-
ments, whereas the idealized study was based on 1 year of idealized data, and it is unclear how the interan-
nual variability affects the results.

4.3. Sensitivity of RErr in O2 to the Number of Floats
To study the dependence of the reconstruction skill on the number of floats, we carried out a set of 10-
member ensembles for N 5 50, 100, 150, 200, and 300. Since the spatial scales used in the objective map-
ping procedure are determined from the data itself, they are optimized for each reconstruction, and not
adjusted in an ad hoc manner. The reconstruction skill was quantified by the RErr2

a and RErr2
s , area averaged

Figure 10. Reconstruction skill of the annual mean and seasonal cycle for DIC for 150 trajectories, based on an ensemble of 10 simulations. (a) RErr2
a for the surface values; (b) RErr2

a for
the 2000 m inventories; and (c) RErr2

s for the surface values. Ice-covered (with the ice fraction> 0.25) areas and areas shallower than 2000 m are masked. For reference, the position of
the SAF in the real ocean is shown by the gray contour line. Two box regions used for the analysis are also shown by the black lines.
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within the South Pacific and South Atlantic-Indian regions shown in Figures 3–8, excluding areas with poor
reconstruction skill (RErr2> 0.5).

The results given in Figure 12 show that in general, the RErra is more sensitive to N than the RErrs. This find-
ing, which is consistent with the idealized OSSEs (Figure 1b), is explained by the fact that RErra is mainly a
function of the spacing between floats, whereas RErrs is also strongly affected by the sampling frequency.
All RErr decrease substantially with increasing N. In general, the RErr exhibits a moderate decline when N is
increased from 150 to 300 but decreases more rapidly when N increases from 50 to 150. To describe this
behavior, we define a parameter that quantifies the change in the slope of the RErr2(N) (Figure 12) between
N 5 50 to N 5 150 and N 5 150 to N 5 300:

a5
RErr2 N550ð Þ2RErr2 N5150ð Þ

100

� �
RErr2 N5150ð Þ2RErr2 N5300ð Þ

150

� �21

(10)

where RErr are defined by either (6) or (7). This parameter is unity if RErr decreases linearly with N and is >1
if the sensitivity to N weakens with larger N.

For both the geographical regions examined here, a is indeed >1 for both RErra and RErrs (Table 2). The largest
values are found for RErra at the Pacific surface and RErrs at the Atlantic-Indian, although even these values are
<2.2. Overall, these results suggest that while substantial gains in reconstruction skill are realized when the
number of floats increases from 50 to 150, further increasing the number of floats from 150 to 300 gives a
comparatively small improvement. Our idealized OSSEs demonstrate that such behavior can be expected for
fields dominated by relatively long length scales (Figures 1c and 1d), because they can be resolved by fewer
floats and further increasing the number of floats does not significantly improve the reconstruction skill.

For the annual-mean fields, more than 90% of the regions have RErr2
a < 0.5 for N> 100. Bringing the RErr

to zero everywhere in the domain would, however, require dense spatial coverage in several ‘‘problem-
atic’’ (e.g., parts of ACC) spots. Notably, RErrs remains large in the South Indian Ocean and Agulhas
region even for N 5 300. Note also that none of the fields exhibit a clear asymptotic behavior for these

values of N. Dramatically increasing the
number of floats would undoubtedly bring
the RErr closer to zero but likely is not
achievable for practical reasons. An opti-
mized distribution of floats, with more floats
in these problematic spots, would also pro-
duce smaller RErr.

Figure 11. Effective resolution of the array of 150 floats. The absolute reconstruction errors are spatially smoothed with a running-mean L by L filter, weighted by a measure of spatio-
temporal variability, squared and area averaged; see section 4.2 for details. (a) Annual-mean surface values; (b) annual-mean inventories; and (c) monthly surface values. Shown are the
ensemble-mean values together with uncertainty range.

Table 2. Parameter a; See Section 4.3 for the Definitiona

RErra Surface RErrs Surface RErra Inventory

Pacific 1.9 1.5 1.5
Atlantic-Indian 1.5 2.1 1.8

aValues> 1 indicate decreasing sensitivity of RErr to N for N> 150.
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5. Summary and Discussion

This study uses OSSEs to examine the reconstruction skill of biogeochemical variables in the Southern
Ocean observed with SOCCOM profiling floats. Focusing on the reconstruction of a climatology, we address
the reconstruction skill for the geographical distribution in both the annual-mean fields and the seasonal
cycle. Two variables are considered by this study: O2, which is directly measured by the SOCCOM array, and
DIC, which is inferred from the SOCCOM measurements. The reconstruction skill is quantified by the recon-
struction error (RErr), defined as the difference between the reconstructed and actual model-simulated
fields (reconstruction bias) weighted by a local measure of the spatiotemporal variability (i.e., the signal that
the objective mapping is intended to recover). Using RErr as our metric, we find that for an array of floats
resembling the planned SOCCOM array, the reconstruction skill is good (RErr2< 0.5) over most of the
domain for the annual mean at the surface and in the inventories, and for the seasonal cycle at the surface.
Both the idealized and comprehensive OSSEs suggest the importance of the magnitude of the seasonal
cycle and spatial tracer gradients, the speed of the float movement, the strength of mesoscale variability,
and the number of floats. These factors explain a large part of the spatial variability in the reconstruction
skill and can be used to predict the reconstruction skill of the actual SOCCOM array.

The square of RErr can be interpreted as the mean squared reconstruction bias normalized by the magni-
tude of the signal and thus as an uncertainty on a mapped climatology. This definition of RErr is consistent
with the fact that the reconstruction bias is caused by a limited number of observations of a field that is

Figure 12. Dependence of the reconstruction skill for O2 on the number of floats. (top row) Ensemble-mean area-averaged RErr2 with an uncertainty range; the averaging is carried only
over the regions where RErr2< 0.5. (bottom row) Portion of the total region area where RErr2< 0.5. The geographical regions are shown by black lines in Figures 3–8.
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changing in time and space, and the bias is, therefore, expected to increase with variability. According to
the idealized model, RErrs is not sensitive to the magnitude of the seasonal cycle for a tracer which is spa-
tially uniform and has no mesoscale variability. In the presence of spatial variability and mesoscale ‘‘noise,’’
however, RErrs decreases with the strength of the monthly variability. This result is further confirmed by the
comprehensive OSSEs, which show that RErrs is low in regions where the seasonal cycle is strong. In simple
terms, it is easier to reconstruct a strong signal.

The reconstruction skill also depends heavily on the spatial sampling density [e.g., Kamenkovich et al., 2009],
which is determined by the number of deployed floats N and by the float movement. Our idealized OSSE
demonstrated that accurate recovery of a time-varying signal of a given length scale requires the average sep-
aration between floats data points to be approximately 1/5 of that length scale. However, once the length
scale is resolved, further increases in N do not bring significant reduction in RErr. Full OSSEs indeed demon-
strate that RErr tends to asymptote for N> 150 and, thus, a doubling of N from 150 to 300 appears unlikely to
significantly improve reconstruction of the climatology of O2. This conclusion is in close agreement with Maj-
kut et al. [2014], who analyzed reconstruction of the air-sea CO2 flux from measurements taken at randomly
distributed fixed locations and concluded that 200 floats is sufficient to reconstruct the seasonal climatological
CO2 flux with minimal error. The agreement between our results and Majkut et al. [2014] suggests that resolv-
ing long length scales in reconstructions of biogeochemical variables is of primary importance and provides a
solid basis for the planning of the SOCCOM deployments [also in analysis by M. Mazloff personal communica-
tion, 2017]. Furthermore the idealized study demonstrates that float movement can improve spatial coverage
and lower the RErr for the annual mean, while also degrading reconstruction of the seasonal cycle relative to
the case with nonmoving floats [see also Kamenkovich et al., 2009, 2011]. Mesoscale variability in the sampled
field can also increase RErr, especially in regions where its magnitude exceeds the magnitude of the seasonal
cycle, such as the Agulhas region and the part of the ACC south of Australia. Reconstruction of the seasonal
cycle in these regions requires high spatial sampling density, which is difficult to achieve due to fast move-
ment of floats. Our results suggest that simple doubling of the number of floats from 150 to 300 is not suffi-
cient for significant improvement of the reconstruction skill in these regions.

Conclusions from this study apply only to the reconstruction of global maps of upper ocean quantities. An
observing system like SOCCOM can have additional, equally important objectives, including studying spe-
cific processes, regional properties, and water mass characteristics. These objectives will require separate
analysis of carefully designed OSSEs. The numerical models used in our comprehensive OSSEs are among
the most realistic available today, and most importantly, they have a high spatial resolution that allows at
least partial resolution of mesoscale variability. The model-simulated fields can still have biases relative to
the observed quantities, and conclusions from any OSSEs are potentially model specific. For example, model
biases in temporal and spatial variability will undoubtedly affect the reconstruction skill and geographical
distribution of RErr. Furthermore, the float trajectories used in our OSSEs were not calculated by the same
model that produced the biogeochemical fields being reconstructed, which introduces additional uncer-
tainty in our conclusions that needs to be addressed in future studies. This uncertainty will depend on how
strongly the 1000 m trajectories are correlated with these fields, although the idealized model suggests that
the dependence of RErr on the float advection speed is modest. We did not attempt to use OSSEs for opti-
mization of the objective mapping technique used in this study or to study the dependence of the conclu-
sions on its parameters. Our main goal was to establish the feasibility of the map reconstruction with an
array of 150 floats and to study the primary factors affecting the resulting reconstruction skill. Note that
both the size of the actual full SOCCOM array (150 floats) and its net lifespan (5 years) may be different
from those used in the control simulation here. These important parameters are affected by the rate of loss
of floats, float design, specific deployment strategy, and future extensions of the array that cannot be taken
into account in our study.

Perhaps the largest source of uncertainty in these conclusions lies in the SOCCOM deployment sites and tra-
jectories. To address this uncertainty and to reduce the potential model dependence in the results, we used
an ensemble of real and model-simulated Argo trajectories. As the actual SOCCOM array is being gradually
brought to full strength, most of the deployment sites are still to be determined. Conclusions from this
study can be used to assist the deployment planning, by indicating regions where more profiles are
needed, such as the ACC south of Australia, the SW Atlantic and the Agulhas. Further studies that focus spe-
cifically on the future deployments and the expected reconstruction errors are currently under way. Finally,
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as the number of under-ice measurements by Argo-like floats has been recently growing, studies of the cor-
responding reconstruction skill are being carried out, with a focus on the importance of uncertainty in pro-
file locations.
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http://gcmd.nasa.gov/records/AADC_
southern_ocean_fronts.html. Model
data used to produce figures in this
study are available from doi:10.25848/

; additional data are
available upon request from
ikamenkovich@miami.edu.
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Erratum

In the originally published version of this article, the modeling code DOI in the Acknowledgments section did
not link toits online source. This DOI has since been updated and links to an online source,

the authoritative version of record.
ersionso this v may

be considered
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